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Author's Summary 

In this thesis the propagation of three kinds of non-linear dispersive water waves is studied, 
viz. cnoidal waves, Boussinesq waves and Stokes waves. 

The Introduction starts with a general survey of dispersive wave phenomena, followed by a 
summary of linear dispersive wave theory and Whitham's theory of non-linear conservative 
dispersive waves. Then a general asymptotic representation of slowly varying wavetrains is 
given. For such wavetrains quantities like wavenumber, frequency, amplitude, mean waveheight, 
etc. alter only by a very small fraction (of order of magnitude 1/K, where K is a large number) of 
themselves during one period or within one wavelength. The asymptotic representation is in 
the form of a perturbation series in descending powers of the large parameter K. 

Chapter I deals with asymptotic solutions of the Korteweg-de Vries equation for cnoidal 
waves in the form of a slowly varying wavetrain. After substitution of the asymptotic expansion 
for the slowly varying wavetrain into the governing equation and equating coefficients of the 
various powers of K to zero, the coefficient of the highest power of K yields an ordinary differen- 
tial equation for the leading term of the asymptotic expansion as a function of the general 
phase coordinate. This equation is identical to that for the uniform periodic progressive 
wavetrain solution of the problem. Hence the dependence of the leading term of the asymptotic 
expansion for the slowly varying wavetrain on the general phase coordinate is the same as for 
the uniform wavetrain. Furthermore this leading term depends on four slowly varying param- 
eters, among which the wavenumber and the frequency. For these parameters, determining 
the large-scale variations of the wavetrain, four equations are derived. 

They satisfy the dispersion relation and also there is a relation between local wavenumber and 
local frequency expressing the conservation of wavecrests. The two remaining equations are 
obtained by imposing conditions of boundedness on the second term of the asymptotic ex- 
pansion. This leads to a pair of integral relations involving the slowly varying parameters. It 
is shown that these relations also may be obtained by applying an appropriate averaging 
technique to some conservations laws of the problem. 

The equations for the four slowly varying parameters are simplified by an asymptotic ex- 
pansion with respect to the small amplitude/depth ratio. Only the lowest order non-linear 
effects are taken into account. After transformation in characteristic form a hyperbolic set of 
two equations involving wavenumber and amplitude uncouples. These equations are similar 
to the equations for the one-dimensional unsteady motion of a compressible gas with a fictitious 
adiabatic pressure-density relation. By transforming these equations into an axisymmetric 
wave equation it is possible to give an approximate solution to the initial value problem for 
slowly varying wavetrains. 

In Chapter II one- and two-dimensional Boussinesq waves are dealt with and it is shown that 
also for these waves the "gas dynamics analogy" holds. 

Chapter III is devoted to one-dimensional Stokes waves and the final results are identical 
to those obtained by Whitham's theory. In the Appendix a derivation is given of the uniform 
progressive periodic Stokes wave, developed in powers of the small amplitude/wavelength 
ratio. 

* Requesters may obtain copies of this thesis from the author. Author's address : Delft University of Technology, 
Department of Mathematics, Julianalaan 132, Delft, the Netherlands. 

Journal of Engineerin 9 Math., Vol.'3 (1969) 79 


